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Abstract. We construct Poisson brackets at the boundaries of open strings and membranes with constant
background fields which are compatible with their boundary conditions. The boundary conditions are
treated as primary constraints which give infinitely many secondary constraints. We show explicitly that
we need only two (the primary one and one of the secondary ones) constraints to determine the Poisson
brackets of strings. We apply this to membranes by using canonical transformations.

1 Introduction

Recently non-commutative spacetime attracted much at-
tention from both the theoretical [1–4] and phenomeno-
logical [5] points of view. Especially in string theory, there
are many studies of non-commutative descriptions of D-
branes which are translated into a commutative descrip-
tion by the Seiberg–Witten map [1].

It was pointed out by Connes, Douglas and Schwarz
[2] that M-theory with a constant background 3-form ten-
sor field compactified on a torus can be identified with
matrix theory compactified on a non-commutative torus.
Similarly, string theory with a background NS B-field is
equivalent to string theory on a non-commutative space
[3].

The non-commutativity comes from the fact that the
canonical Poisson bracket does not coincide with a bound-
ary condition [6]. Some authors have made efforts to ob-
tain Poisson brackets which are compatible with boundary
conditions of strings [7–12] and membranes [13,14]. Let
us call them “boundary Poisson brackets”1. For strings,
boundary Poisson brackets can be obtained by using the
Dirac formalism [7,8,10]. The quantization is defined
by replacement of a Dirac bracket with a commutator;
{ , }D → −i[ , ]. When a NS B-field is turned on, {Xµ,
Xν}D has a non-zero value at the boundaries, and the
boundary coordinates become non-commutative at the
quantum level.

In M-theory, the fundamental object is called the “M2-
brane” which is a 2-dimensionally extended object. This
is coupled with a 3-form field. The boundary condition of
the membrane is non-linear, and it is difficult to get all of
the secondary constraints. Thus we need some new ideas
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we were informed by Bering that the term “boundary Poisson
bracket” has already been used in [15]. Their definition of the
term is different from ours

to deal with the system. In [14], a partial gauge fixing
condition with which a boundary constraint of a mem-
brane gives a finite number of constraints is introduced.
We would like to determine a boundary Poisson bracket
in a completely gauge fixed action. In this paper, keeping
this in mind, we construct a boundary Poisson bracket
of an open string by avoiding using all of the secondary
constraints, and apply this to a membrane.

The present paper is organized as follows. In the next
section, we show that it is possible to construct a boundary
Poisson bracket of an open string from two constraints by
demanding that the canonical Poisson bracket is changed
only at boundaries of an open string. In Sect. 3, we put
to use the previous procedure in a system of a membrane.
Section 4 is devoted to a summary.

2 Strings and constant 2-form fields

In general, the canonical Poisson bracket,

{Xµ(σ), Xν(σ′)}p = 0,

{Xµ(σ), Pν(σ′)}p = δµ
ν δ(σ − σ′),

{Pµ(σ), Pν(σ′)}p = 0, (2.1)

in field theory and string theory with boundaries does not
coincide with their boundary conditions. In string the-
ory, since open strings have endpoints, we have to impose
their boundary conditions. Both Neumann and Dirichlet
conditions change the canonical Poisson bracket at the
boundaries of open strings. In the presence of a NS B-field,
along a D-brane, a boundary condition of an open string
becomes a mixed type of Neumann and Dirichlet condi-
tions. Also the mixed type boundary condition does not
coincide with the canonical Poisson structure [6]. With re-
spect to mixed type boundary conditions, it is non-trivial
work to determine boundary Poisson brackets. The repre-
sentative method to construct boundary Poisson brackets
is the Dirac formalism.
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In the Dirac formalism, boundary conditions are dealt
with as primary constraints. By the definition of a Dirac
bracket, a boundary condition and a Dirac bracket are
manifestly compatible with each other. In other words, a
Dirac bracket between a boundary condition and canoni-
cal variables vanish, if the constraints are of second class.
This system is one of the rare examples in which primary
constraints produce infinitely many secondary constraints.

On this subject there are some papers [7,8,10]. In this
system, we would like to see that we are able to deter-
mine a boundary Poisson bracket if we demand locality
of the boundary Poisson bracket, i.e. the canonical Pois-
son bracket is changed only at the boundaries of an open
string. In the following, we avoid using the Dirac formal-
ism directly.

The gauge fixed action of a bosonic open string with
a constant NS B-field background is given by

S = −Ts

2

∫
d2ξ[∂αXµ∂αXµ − Bµνεαβ∂αXµ∂βXν ], (2.2)

where Ts is the string tension. The canonical momentum is
Pµ = Ts(∂τXµ+Bµν∂σXν) and the action is non-singular.
By the variational principle, the equation of motion is

∂α∂αXµ = 0, (2.3)

and along the D-brane the boundary condition in terms
of the canonical momentum is

∫ π

0
dσδ(σ)

(
1
Ts

BµνPν(σ) + Mµν∂σXν(σ)
)

= 0. (2.4)

with M = η −B2 (ηµν the target space flat metric tensor)
and similarly with δ(σ −π). The canonical Hamiltonian is

H =
Ts

2

[(
1
Ts

Pµ − Bµν∂σXν

)2

+ ∂σXµ∂σXµ

]
. (2.5)

In this paper we will mainly consider the boundary con-
dition only at σ = 0, since the discussion of the condition
at σ = 0 is parallel with that at σ = π. Boundary Pois-
son brackets must be compatible with the constraint. We
denote the boundary Poisson bracket by { , }b which is de-
fined by the condition that the boundary Poisson bracket
of the boundary condition with an arbitrary canonical
variable vanishes;

{
f(X, P ),

∫ π

0
dσ′δ(σ′)

×
(

1
Ts

BνρPρ(σ′) + Mνρ∂σ′Xρ(σ′)
)}

b
= 0, (2.6)

where f(X, P ) is an arbitrary function on the phase space.
From this condition only, we cannot determine the bound-
ary Poisson bracket uniquely since there are only 2 inde-
pendent equations for 3 unknowns [6]. In order to deter-
mine this uniquely, it was considered that we must use
the secondary constraints [7,8]. The boundary constraint

(2.4) gives infinitely many secondary constraints [8] which
are ∫ π

0
dσδ(σ)∂2n

σ

(
1
Ts

BµνPν(σ) + Mµν∂σXν(σ)
)

= 0

(n = 1, 2, · · ·), (2.7)∫ π

0
dσδ(σ)∂2n+1

σ Pµ(σ) = 0 (n = 0, 1, · · ·). (2.8)

They originate from the condition of stationarity of the
boundary constraint (2.4). From these we choose, for ex-
ample, the n = 0 case of (2.8). We have another expla-
nation for the necessity of the condition for the case with
Bµν �= 0. We need the condition in order for the equation
of motion (2.3) to be equivalent to Hamilton’s equations:

∂τXµ(σ) =
1
Ts

Pµ(σ) − Bµν∂σXν(σ), (2.9)

∂τPµ(σ) = Bµν∂σPν + TsM
µν∂2

σXν . (2.10)

At the boundaries, (2.9) can also be rewritten as

∂τXµ(σ)|σ=0,π =
1
Ts

(M−1)µνPν(σ)
∣∣
σ=0,π

. (2.11)

By virtue of the condition (2.8) with n = 0, the equation
of motion (2.3) is equivalent to the equations (2.11) and
(2.10).

Here a question arises. Do we need all of the secondary
constraints to construct the boundary Poisson bracket? In
[9] only the equation of motion (2.3) and the boundary
condition (2.4) are used. We would like to consider this in
the following.

Let us add the condition{
f(X, P ),

∫ π

0
dσ′δ(σ′)∂σ′P ν(σ′)

}
b

= 0 (2.12)

to the previous one (2.6). Since we have 4 equations for 3
unknowns, in spite of the existence of the infinitely many
constraints, we have a possibility to be able to determine
the boundary Poisson brackets, if we demand their local-
ity. We assume that the bracket is anti-symmetric and
bilinear and satisfies the derivation rule which are funda-
mental properties of the canonical Poisson bracket.

By solving (2.6) and (2.12) with f = X, P we have

{Xµ(σ), Xν(σ′)}b =
1
Ts

Q(σ, σ′)(M−1B)µν , (2.13)

{Xµ(σ), Pν(σ′)}b = δµ
ν δ̂(σ, σ′), (2.14)

{Pµ(σ), Pν(σ′)}b = 0, (2.15)

where

∂σ δ̂(σ, σ′)
∣∣∣
σ=0,π

= 0, ∂σQ(σ, σ′) = δ̂(σ, σ′). (2.16)

Since δ̂(σ, σ′) have to be equivalent to the ordinary delta
function δ(σ − σ′) at bulk, we use the ansatz

δ̂(σ, σ′) = δ(σ − σ′) + a1δ(σ + σ′)
+ a2δ(σ + σ′ − 2π), (2.17)
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where a1 and a2 are constants to be determined. In the
neighborhood of σ = 0,

δ̂(σ, σ′) = δ(σ − σ′) + a1δ(σ + σ′). (2.18)

Although the delta function is not a periodic function, we
calculate the Fourier expansion as if it has periodicity 2π.
The Fourier expansions of the delta functions are

δ(σ − σ′) (2.19)

=
1
π

[
1 + 2

∞∑
n=1

(cos nσ cos nσ′ + sinnσ sin nσ′)

]
,

δ(σ + σ′) (2.20)

=
1
π

[
1 + 2

∞∑
n=1

(cos nσ cos nσ′ − sin nσ sin nσ′)

]
.

In order to satisfy the left equation of (2.16), a1 = 1.
Similarly we have a2 = 1. Then we have

δ̂(σ, σ′) = δ(σ − σ′) + δ(σ + σ′) + δ(σ + σ′ − 2π).
(2.21)

From this and (2.16) we obtain

Q(0, 0) = −Q(π, π) = −2, (2.22)

where we have assumed that Q(0, π) and Q(π, 0) are zero.
It is easy to find that the boundary Poisson bracket

and other constraints (2.7) and (2.8) are consistent. The
procedure will be applicable for other systems with bound-
ary conditions which are linear in the canonical variables.

3 Membranes and constant 3-form fields

As a next step we consider a boundary Poisson bracket of
an open membrane. Since membranes are 2-dimensionally
extended objects, they are coupled with 3-form fields. Our
aim in the present section is to construct a boundary Pois-
son bracket for an open membrane with a constant 3-form
C-field background. Due to the 3-form field, a boundary
term appears in the action of an open membrane, which is
third order in its membrane’s coordinates. So its boundary
condition becomes non-linear and becomes a mixed type
condition. By the non-linearity, a conventional Dirac pro-
cedure is not an easy task [13,14]. It is hard to construct
all of the secondary constraints. We follow the previous
procedure also in the present case. In addition to this, we
use canonical transformation in order to make calculations
possible.

We consider a membrane whose topology is cylindri-
cal. The worldvolume coordinates of the membrane are
parameterized by τ , σ1 ∈ [0, π] and σ2 ∈ [0, 2π]. Along
the σ2 direction the membrane is periodic.

We use the Polyakov action [16]

S = −Tm

2

∫
d3ξ

[√− det γαβ(γαβ∂αXµ∂βXµ − 1)

+
2
3!

εαβγCµνρ∂αXµ∂βXν∂γXρ

]
, (3.1)

where d3ξ ≡ dτdσ1dσ2, Tm is the membrane tension and
γαβ is the metric tensor on the membrane. Cµνρ is a con-
stant background field. This action has the worldvolume
reparametrization invariance. Then we need to perform a
gauge fixing procedure. Let us adopt the gauge condition:
γ0a = 0 γ00 = − det hab with a, b = 1, 2. Here hab is the
induced metric on the membrane. The gauge fixed action
is

S =
Tm

2

∫
d3ξ

[
∂τXµ∂τXµ − 1

2
{Xµ, Xν}{Xµ, Xν}

− 2
3!

εαβγCµνρ∂αXµ∂βXν∂γXρ

]
, (3.2)

where {f, g} = εab∂af∂bg.
The canonical Poisson bracket for the cylindrical mem-

brane is changed by the boundary condition, and also by
the fact that the membrane is periodic along the σ2 direc-
tion. Before studying the boundary condition at σ1 = 0, π,
we see the modification of the canonical Poisson bracket
due to the periodicity along the σ2 direction.

The left hand side of the canonical Poisson bracket

{Xµ(ξ), Pν(ξ′)}p = δµ
ν δ(ξ − ξ′) (3.3)

has periodicity 2π along σ2 and σ′
2. However, the right

hand side does not have such a periodicity. So the delta
function δ(σ2 − σ′

2) has to be replaced by a periodic one,
δ̃(σ2 − σ′

2), which satisfies

δ̃(σ2 − σ′
2) = δ̃(σ2 − σ′

2 + 2πm) (m ∈ Z). (3.4)

Note that the canonical Poisson bracket for the cylindrical
membrane is not changed only at the boundaries of the
membrane but also at the bulk of it.

Next we would like to see a change of the canonical
Poisson bracket by a boundary condition. For the action
(3.2), the canonical Hamiltonian is

H =
Tm

2

(
1

Tm
Πµ +

1
2
Cµνρ{Xν , Xρ}

)2

+
Tm

4
{Xµ, Xν}2. (3.5)

Notice that the Hamilton theory (3.5) is canonically equiv-
alent to that with Cµνρ = 0. They are related by the
transformation

Π̃µ = Πµ +
1
2
Cµνρ{Xν , Xρ}, X̃µ = Xµ. (3.6)

We will start from the system (X̃, Π̃) with Cµνρ = 0.
With respect to the membrane, we adopt the bound-

ary condition ∂σ1X̃
µ|σ1=0,π = 0. The secondary constraint

is ∂σ1Π̃
µ|σ1=0,π = 0. Furthermore the phase space (X, Π)

can be transformed by Xµ = Π̂µ and Πµ = −X̂µ which
are canonical ones. In terms of the canonical variables
(X̂, Π̂), the conditions are replaced by

∂1Π̂
µ
∣∣∣
σ1=0,π

= 0, (3.7)

∂1X̂µ − Cµνρ∂
2
1Π̂ν∂2Π̂

ρ
∣∣∣
σ1=0,π

= 0. (3.8)
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In order to determine the boundary Poisson bracket of
the membrane, we follow the method used in the previous
section with the conditions (3.7) and (3.8). The result is

{Π̂µ(ξ), Π̂ν(ξ′)}b = 0, (3.9)

{X̂µ(ξ), Π̂ν(ξ′)}b = δµ
ν δ̂(ξ − ξ′), (3.10)

{∂1X̂µ(ξ), X̂ν(ξ′)}b = −TmCµνρ[∂2
1 δ̂(ξ − ξ′)∂2Π̂

ρ(ξ)

− ∂2
1Π̂ρ∂2δ̂(ξ − ξ′)], (3.11)

with δ̂(ξ − ξ′) := δ̂(σ1, σ
′
1)δ̃(σ2 − σ′

2). The last one is valid
only at σ1 = 0, π. We have obtained the boundary Poisson
bracket of the membrane without using any approxima-
tions. When the C-field has a non-zero value, the bound-
aries of the membrane become non-commutative.

4 Summary

In this paper, we have explicitly shown that though there
exist infinitely many secondary constraints, the bound-
ary Poisson bracket of a bosonic open string can be de-
termined only from two constraints by demanding its lo-
cality. The brackets (2.13)–(2.15) coincide with all other
secondary constraints (2.7) and (2.8). In other words, the
boundary Poisson bracket between canonical variables and
the secondary constraints vanishes.

Secondly we have applied the procedure to the sys-
tem of a membrane with a constant 3-form field back-
ground by using the canonical transformations. The non-
commutativity depends on the canonical momentum, and
it is first order in Cµνρ.
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